Developing Computer-Based Assessments for Large-Enrollment Classes: A Faculty Workshop for STEM Disciplines

PRESENTERS:
Ronald DeMara
Baiyun Chen
Richard Hartshorne
Richard Thripp

UNIVERSITY OF CENTRAL FLORIDA
The design of effective digitization for formative and summative assessments that are suitable for computer-based exam delivery remains an open challenge across disciplines in science, technology, engineering and mathematics (STEM). The STEM-specific challenges include the need to adequately evaluate conceptual understanding, design skills, and solution structure that exceed the capabilities of rote multiple-choice formats. At the University of Central Florida, we have developed and evaluated a six-week cross-disciplinary Assessment Digitization Innovation (ADI) Workshop that supports STEM faculty in developing computer-based examinations. This case study evaluates the results of the workshop from the 2016 and 2017 cohorts. The evaluation results indicated a high level of satisfaction among participants with the ADI strategy and hands-on activities.

ABSTRACT

• STEM faculty predominantly use paper-pencil assessments (DeMara, Chen, Hartshorne, & Thripp, 2017)

• Potentials of computer-based assessments:
 • No significant differences in academic performance between CBA and paper-based assessment for equivalent STEM testing materials (Prisacari & Danielson, 2017)
 • More faculty time devoted to teaching and mentoring (DeMara et al., 2017)

• Benefits of testing effect in STEM education (Rawson, 2015): Mastery learning can be enabled for complex concepts through frequent formative assessments supported with timely and thorough feedback.

CHALLENGES

How do we prepare faculty to effectively facilitate and evaluate learning in large-enrollment STEM gateway courses?

• STEM faculty predominantly use paper-pencil assessments (DeMara, Chen, Hartshorne, & Thripp, 2017)

• Potentials of computer-based assessments:
 • No significant differences in academic performance between CBA and paper-based assessment for equivalent STEM testing materials (Prisacari & Danielson, 2017)
 • More faculty time devoted to teaching and mentoring (DeMara et al., 2017)

• Benefits of testing effect in STEM education (Rawson, 2015): Mastery learning can be enabled for complex concepts through frequent formative assessments supported with timely and thorough feedback.

How do we prepare faculty to design and deliver online STEM-specific assessments?

• Conceptual Knowledge
• Procedural Application
• Creative Design

• Partial Credits Structure
• Question Data Banks

• Support Services
• Academic Integrity
ASSESSMENT DIGITIZATION INNOVATION (ADI)
FACULTY WORKSHOP

Participants

• 2016 Summer Cohort
 • 10 faculty members, 3 TAs, ECE, CS, MAE, CECE, IEMS *
 • 10 undergraduate courses with over 6,000 annual student enrollment

• 2017 Summer Cohort
 • 7 faculty members, 2 TAs, ECE, CS, MAE, CECE
 • 7 undergraduate courses with over 2,500 annual student enrollment

• Asynchronous Participants
 • 2 faculty members, 1 TA, IT and ECE
 • 3 undergraduate courses with 1,500 annual student enrollment

Course Structure

<table>
<thead>
<tr>
<th>WEEK</th>
<th>MODALITY</th>
<th>TOPIC</th>
<th>ACTIVITIES</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Online</td>
<td>Course Start</td>
<td>Course orientation and introduction discussions</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>F2F</td>
<td>Flipping STEM Classes</td>
<td>Guest speakers and class discussions</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>F2F</td>
<td>Modularization Planning</td>
<td>Guest speakers & a field trip to the Evaluation and Proficiency Center (EPC)</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Online</td>
<td>Exemplar Vignettes, Tutoring, and Score Clarification</td>
<td>Online readings and an assessment redesign plan</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>F2F</td>
<td>Structuring Creativity/Design/Soft Questions</td>
<td>Graduate student panel, guest speakers and optional open lab</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Online</td>
<td>University Support Resources</td>
<td>Online readings and showcase preparation</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>F2F</td>
<td>Showcase & Future Online Content</td>
<td>Participants showcase of their quizzes and study sets</td>
<td>14</td>
</tr>
</tbody>
</table>

HOW DID FACULTY PARTICIPANTS PERCEIVE THE BENEFITS OF THE WORKSHOP?

Faculty perceptions of benefits of ADI Workshop

- **Improved ability to serve large enrollments**: 92%
- **Convenience compared to traditional assessment delivery**: 92%
- **Time savings for faculty/GTAs**: 83%
- **Increased understanding of areas to remediate**: 83%
- **Increased learning outcomes**: 75%
- **Increased integrity of assessment delivery**: 75%
- **Honing of soft skills via Socratic clarifications**: 42%

n=12
Assessment strategies adopted by participants

- Use formative & summative tests to pace and scaffold student learning
 - Timely and thorough feedback
 - Learning analytics: quiz statistics
 - Variety of distractor choices
 - Question data banks: cloning procedures

- Use proctored tests with score clarification to enable mastery learning

- Replace lab reports with portfolio lab assessments to encourage student reflection and growth (Chen, DeMara, Salehi, & Hartshorne, 2018)

- Integrate various classroom active learning strategies to increase knowledge acquisition and critical thinking and problem-solving abilities

Adapting Canvas quizzes to present engineering questions

- Clone questions to form question data banks
- Use variables in formula and numerical answer questions
- Break problems into parts for scaffolding: using Design-by-selection, Matching, Multiple answers, etc.
- Provide detailed feedback

Faculty participants digitized one or more modules of their courses that potentially impact over 10,000 students annually